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ABSTRACT 

Large unmanned aerial vehicle (UAV) swarms are a nascent technology 

promising useful military and civilian solutions to difficult problems. Securing data 

communications within the swarm is essential to accomplishing swarm objectives. The 

Naval Postgraduate School has successfully demonstrated the launch, flight and landing 

of 50 UAVs. The communications architecture to support a UAV swarm is unique. The 

practical challenges of creating a secure communications channel in the swarm are 

detailed in this thesis. The Advanced Encryption Standard (AES) was chosen as one of 

the encryption algorithms for testing, as it is authorized by the National Security Agency 

(NSA). Various modes of AES, including Galois/Counter Mode and Counter with Cipher 

Block Chaining Message Authentication Code, were analyzed within the swarm 

architecture. The impact of these authenticated encryption algorithms on network 

throughput and processor performance is presented. In addition to AES, ChaCha20-

Poly1305, another type of authenticated encryption scheme, was studied. It was found to 

be the better solution for securing the swarm if classified data is not being handled or 

created. 
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I. INTRODUCTION 

A. NEED FOR UAV SECURITY 

In 2011, the Iranians captured an unmanned aerial vehicle (UAV). The RQ-170 

Sentinel was flying in Iranian territory and was not brought down with weapons. The loss 

of this single UAV proved to be an intelligence coup for the Iranians and an 

embarrassment to the United States [1]. Securing UAVs from loss, malfunction and 

exploitation is of utmost importance. Unfortunately, security is often an afterthought [2]. 

Systems are designed, proof of concepts are built, and only then is security given any 

consideration. 

With the advent of ever-cheaper hardware and further development of unmanned 

systems technology, the ability to field large swarms of unmanned aerial vehicles has 

become a reality. On August 27, 2015, the Naval Postgraduate School set a world record 

by autonomously launching, flying and landing 50 UAVs concurrently [3]. This swarm of 

UAVs can autonomously and cooperatively work toward an objective. The UAV swarm 

can be controlled by a single operator, guiding it to perform a specific behavior. Specific 

behaviors include area search, point intercept, ordered transit and mass-ordered landing. 

The technology is nascent, and as such, the full range of its capabilities are yet to be 

discovered. While the future prospects are exciting, the nature of UAV swarms is distinct 

from single UAVs and presents unique security challenges that must be addressed before 

UAV swarms are released for use as an operational tool. 

B. CURRENT RESEARCH ENVIRONMENT 

The inability to solve the security problem has and will continue to have severe 

consequences for swarm deployment [1], [4]. In the last several years, researchers have 

studied the various cyber security threats that UAV swarms face. These threats have been 

identified, along with extensive risk assessments [5], [6]. 

While there is a consensus in the research community that UAV swarms are 

vulnerable to cybersecurity attacks, there has been little movement in identifying 

appropriate algorithms to facilitate a security architecture for UAV swarm 
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communications. As large UAV swarms are just coming into existence, examples of 

security implementations in practice do not exist. This is especially true for large swarms. 

A swarm that is unable to operate securely is almost entirely useless in any military or 

civilian application. 

C. THESIS CONTRIBUTIONS 

Currently, there is no security architecture built into the UAV swarm at NPS. This 

stems from various factors, including cost and how UAV performance will be affected by 

expensive security computations. 

In this thesis, we focus on the impact of communication security on the swarm. 

This includes both encryption and authentication. UAV to UAV communications is a 

distinguishing feature of swarms and, thus, is a unique attack vector. Authenticated 

encryption (AE) is designed to simultaneously protect both a message’s privacy and 

authenticity. For classified information communications, we study the Advanced 

Encryption Standard (AES). AES has been approved and adopted by the National 

Security Agency (NSA) as the official cryptographic module for the transmission of 

secret and top secret information [7]. We implement four AES modes: Counter with 

Cipher Block Chaining Message Authentication Code (CCM), Galois/Counter Mode 

(GCM), Synthetic Initialization Vector (SIV) and EAX. In addition, we also implemented 

ChaCha20-Poly1305, an unstandardized AE algorithm. This is used as a baseline for 

securing unclassified swarm communications. We present results that show the impact of 

these algorithms on network throughput and execution time.  

While the solution provided in this thesis is specific to the UAV swarm found at 

the Naval Postgraduate School, the results can be generalized to provide valuable insight 

to other types of swarms including terrestrial and satellite swarms. For example, the 

National Aeronautics and Space Administration (NASA) has experimented with sending 

groups of satellites into orbit that work together on a particular goal [8]. Protecting the 

communications of these satellites is essential to the accomplishment of its mission. 

Solutions that can be adapted to this and other communication security problems are 

provided in this thesis. 
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It must be noted that parts of this thesis have already been published by the author 

at the time of this writing [9]. 

D. THESIS ORGANIZATION 

The remainder of the thesis is organized as follows. In Chapter II, the NPS swarm 

design and operation is presented. A security assessment is presented that details 

numerous methods of attacking a swarm. We also discuss communication security and 

how it is to be implemented in the swarm. Various AE techniques are outlined for 

consideration. A network traffic analysis, including the impact of AE on network 

throughput is presented in Chapter III. In Chapter IV, a comparison of AE techniques 

implemented on the ODroid processor is discussed. The percentage of time spent on 

cryptographic operations for each AE technique is calculated. In Chapter V, we conclude 

the thesis and propose future research directions. 
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II. NPS SWARM SYSTEM ARCHITECTURE 

A. CONCEPT OF OPERATIONS 

The swarm architecture and its detailed operation can be found in [3] and are 

summarized here. UAVs launch at regular intervals of about 15 seconds and transit to a 

waiting area where they await a command from the swarm controller. The swarm 

controller has a set of predefined behaviors to choose from. After performing the set of 

defined behaviors, a command is sent to land. The swarm then sorts itself and lands in an 

orderly fashion. 

Each UAV was built from low-cost commercially available components. A 

picture of the NPS UAV is shown in Figure 1.  

 

Figure 1.  Picture of NPS UAV, Designed to be Low Cost Yet Capable. 
Source: [3]. 

The swarm communicates with an ALFA AWUS036NEH Long Range Wi-Fi 

Radio and processes information on an ODroid U3 computer with Ubuntu Linux 14.04. 

The ODroid computer has a Samsung Exynos4412 Prime Cortex-A9 Quad Core 1.7 GHz 

with 1 MB L2 cache. All software is coded in Python. Each UAV also possesses a remote 

control (RC) link and a 900-MHz serial link that are used for emergencies and not 

necessary for swarm operation. In a secure setting they are turned off. 
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B. COMMUNICATIONS ARCHITECTURE 

The swarm communicates using IEEE 802.11n in ad hoc mode. The Wi-Fi radio 

has a single spatial stream operating on a 20-MHz channel, allowing for a maximum data 

rate of 72.2 Mbps. Each message is broadcast to each of the other UAVs. There is no 

expectation of privacy from any of the other UAVs. It is single hop, so there is no 

routing. All messages use the User Datagram Protocol (UDP) on top of the Internet 

Protocol version 4 (IPv4), which by definition is connectionless. There is a small subset 

of messages that do receive acknowledgements but is built on top of UDP with a custom 

protocol. The various information pathways to and from a UAV are shown in Figure 2.  

 

Figure 2.  Illustration of UAV Hardware Configuration, Detailing Information 
Paths between Entities. Adapted from [1]. 

Increasing the reliability by using the Transmission Control Protocol (TCP), 

implementing a routing protocol, or communicating with direct links instead of broadcast 

will significantly increase latency and congestion on the network to the point that it 

becomes intolerable with a large swarm. 
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A side effect of the chosen architecture is the need to be tolerant of lossy 

communications. Messages must adhere to two principles. They must be stateless and 

idempotent. Stateless means a message cannot rely on a different message having been 

received. Idempotent means any message received may change the state of the UAV once 

and only once. Duplicate messages do not further change the UAV state [10]. 

The components that make up a message with typical lengths are listed in Table 1. 

Table 1.   Message Contents 

Section Typical Length (bytes) 
Preamble 15 
802.11 Header 34 
IPv4 Header 20 
UDP Header 8 
Autonomous Capability 
Suite (ACS) Header 

16 

Encryption Overhead Varies by Algorithm 
Payload Varies by Behavior 

 

Any security implementation should not fundamentally alter or impose changes 

on the defined communication structure. Doing so would limit the range of behaviors 

available and increase complexity. 

C. SWARM THREAT ASSESSMENT 

Entry points into the UAV environment can be exploited by an adversary and 

must be guarded against. All the entry points to the UAV are shown in Figure 2. Each of 

the pathways and the common exploitations of that pathway are discussed in the 

following subsections. Possible mitigations are given for each exploitation. This section 

is not meant to be a complete list of possible attacks but to present the type of threat 

environment that exists and to demonstrate the vital need for AE. 
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1. Sensor Vulnerabilities 

a. Magnetic and Air Speed Sensor 

A picture of the GPS and magnetic sensor on the NPS UAV are shown in Figure 

3. It is impractical to introduce environmental factors that significantly alter the input to 

the magnetic field or air speed sensors. Care must be taken to ensure the sensors are 

properly calibrated. 

 

Figure 3.  Picture of the GPS and Magnetic Sensor on the NPS UAV 

b. GPS Sensor 

The GPS sensor exploits and mitigations are detailed in Table 2.  
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Table 2.   GPS Sensor Exploits and Mitigations 

Exploit  Description Possible Mitigations 

GPS 
Spoofing 

GPS satellite 
signal is overlaid 
by a stronger 
local signal from 
which it is used to 
direct the UAV. 

- Dead reckoning with the assistance of 
magnetic sensors can be used to give a broad 
idea of where the UAV should go. If the UAV 
GPS receives a signal outside of the dead 
reckoning threshold, it should assume spoofing 
and return to base by reverse dead reckoning 
until it picks up on the base’s authenticated 
homing signal. If available, terrain mapping 
could provide continuity of operations. Use of 
the P(Y)-code decreases the possibility of this 
exploit. 
 
- Monitor signal strength and identity [11] 

GPS 
Jamming 

GPS signal is 
overwhelmed by 
a stronger local 
signal 

Same solutions as with GPS spoofing.  

 

2. Communication Link Vulnerabilities 

There are three communication pathways to the UAV. The first is a remote 

control input used for commanding the UAV one on one. The second is a 900MHz serial 

link between the ground station and autopilot. These first two are not used when 

conducting large swarm operations. 

The third communication link is the IEEE 802.11n ad-hoc radio link. This is the 

communication link used when operating in a swarm environment and is the focus of this 

thesis. Various communication link exploits and mitigations that can be performed on 

each of the communication links are listed in Table 3. 
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Table 3.   Communication Link Exploits and Mitigations 

Exploit Name Description Possible Mitigations 

Communication 
Capture/Eavesdropping 

Information broadcasted to the Ground Control 
Station (GCS) such as telemetry or live video 
feeds are intercepted by the enemy. 

Strong encryption, directional 
antennas. 

Replay Attack Packets are recorded and then rebroadcast at a 
later time. Attacker does not need to break 
encryption to perform this attack. 

Strong authentication and 
serialization. 

Man-in-the-Middle 
Attack 

Information destined for a particular station is 
intercepted, modified and passed on to the 
destination. The link can be hijacked, 
eavesdropped on, or spoofed. 

Strong encryption and 
authentication. 

Denial-of-Service A broad category of attack that congests the 
network with information such that the 
availability of the network is compromised. 

- Directional antennas, multiple 
link frequencies. 
- Turn off applications like ICMP 
that can be used for such attacks. 

Port Attacks Accessing information through services such 
as TELNET and FTP. Viruses can be 
introduced or unintended programs can be run. 

Close all unnecessary ports. Do 
not use insecure services. 

RC Hijack UAV can be forced to disconnect with 
controller, bad actor pairs with UAV. 

Shut down RC link when not 
needed. Strong authentication 
between controller and UAV. 

Side-Channel Attacks Attacks that look at the pattern of RF radiation, 
timing of cryptographic operations or flight 
pattern to discover vulnerabilities. 

- Perform random computer 
functions to throw off timing 
- Set timing of operations to all 
end at the same time. 

Intelligence Gathering 
Vulnerabilities 

Much information can be gathered just from 
the timing of the various messages and the 
different message sizes. Knowing what 
messages are being sent can be deduced 
through traffic analysis. 

- Randomly vary message timing 
(especially for the repeating 
messages). 
- Appending a variable length tail, 
or ensuring all messages are the 
same length. 
- Periodically skip heartbeats, 
especially during periods when 
other messages are being sent. 

 

3. GCS and Home Station Vulnerabilities 

Various components on the NPS UAV are shown in Figure 4. Of particular note is 

the ODroid computer on the right side of the picture.  
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Figure 4.  NPS UAV Motherboard Including ODroid 

GCS and home station exploits and mitigations are listed in Table 4. 

Table 4.   GCS and Home Station Exploits and Mitigations 

Exploit  Description Possible Mitigations 

GCS Virus 
Attack  

A virus in a Ground Control 
Station could cause loss of 
sensitive information or loss 
of UAV control. 

GCS networks should be closed, with 
no Internet connectivity. All software 
added to network should be thoroughly 
scrubbed. 

Human 
Attackers 

Malicious or incompetent 
operators sabotage the system 
by introducing vulnerabilities.

- Two person control of sensitive data 
and algorithms. 
- Access logs. 
- Information Assurance training. 

Algorithm 
Exploits 

Malicious actors can subtly 
manipulate algorithms to 
insidiously direct the swarm, 
or share false data to cause 
confusion, collisions and 
mayhem.  

- Strong authentication. 
- Avoiding overt behaviors that betray a 
particular algorithm inasmuch as it is 
possible. 

 

4. Hardware Vulnerabilities 

A list of various hardware exploits and mitigations is given in Table 5. 
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Table 5.   Hardware Exploits and Mitigations 

Exploit  Description Possible Mitigations 

Technical 
malfunction 

Malfunction of input sensors 
cause UAV to inadvertently 
land, possibly in enemy 
territory. 

- Data destruct mechanism. 
- Return to base on sensor 
malfunction. 
- Land or Hover [1]. 
- Thorough testing. 

Malicious 
Hardware 
Component 

Hardware component might 
be tampered with [12]. 

Adopt an “Accept All” approach, 
where mechanical and peripherals 
are presumed malicious until 
proven otherwise [13]. 

Downed 
UAV 
Recovery 

A crashed UAV might be 
recovered by an adversary. 
Data and algorithms on hard 
drives could be 
compromised. 

- Critical algorithms and data at 
rest should be encrypted. 
- Store critical algorithms and data 
in non-persistent memory. 
- Create a data destroy routine 
when a crash has been detected. 
-General anti-reverse engineering 
solutions. 

 

5. Summarization of Security Exploits and Mitigations 

Naturally, proper risk assessment should be taken into consideration before 

applying any mitigation. Many of the mitigations might not make sense for a UAV 

swarm that is used for academic purposes on a secure military base. 

It is absolutely clear that AE is necessary to truly protect a swarm. Due to the fact 

that swarm communications are broadcast in every direction, any receiver within range of 

the UAV is able to collect communications. In order to prevent tactical information from 

being discovered, encryption is a necessary requirement. Due to the ease of message 

capture and open nature of communications, the swarm is particularly vulnerable to 

replay attacks. As such, strong message authentication and serialization is also an 

absolute necessity. There is a cost, but that cost is unavoidable in almost any operational 

setting and must be accounted for. 

It should also be noted that AE is not sufficient to completely protect the 

communication channel from all types of attacks. Attacks that target the availability of 
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the communications network will not be deterred by AE. While an important area of 

study, countering availability attacks is beyond the scope of this thesis. 

D. COMMUNICATIONS SECURITY ARCHITECTURE 

There are two broad categories for providing encryption and authentication in the 

swarm: symmetrically and asymmetrically. With asymmetric encryption, a public key is 

used to encrypt and a private key is used to decrypt. This creates a different 

communication channel between each UAV. In addition, to provide authentication, the 

system requires a secure central repository for public keys. That repository is either a 

UAV or a ground station.  

Asymmetric cryptography is not an option for swarm communications. It is a 

potential option for initially keying or for inflight rekeying, but for regular 

communications it permanently imposes an undesirable structure on the swarm. 

Symmetric encryption is faster and works within the current swarm architecture. In this 

construct the same key is preloaded before flight into each UAV. The UAV encrypts and 

decrypts with this same key. 

1. Authenticated Encryption Alternatives 

The only two options authorized for encryption by the National Institute of 

Standards and Technology (NIST) are the Advanced Encryption Standard (AES) and 

Triple Data Encryption Standard (3DES) [14]. It is well established that AES is faster, 

more secure and efficient [15] and is the only NSA approved symmetric encryption 

algorithm that can be used for encrypting top secret data [7]. Within AES, there are two 

AE modes available, GCM and Counter with CCM. GCM has the benefit of being both 

efficient and parallelizable [16]. While both CCM and GCM provide secure solutions, 

GCM has a reputation for being faster [17]. 

SIV and EAX are highly specialized AE techniques designed for specific 

problems. Initialization vectors (IVs) are used by cryptographic algorithms to ensure 

duplicate messages produce unique ciphertexts. For most algorithms, including CCM and 



 14

GCM, improper selection of the IV has catastrophic results. SIV was designed to be 

tolerant of IV misuse but sacrifices speed [18]. 

EAX is another AES mode that was built to improve certain features of CCM. It 

can use arbitrary length IVs and does not need to know the message length in advance 

before beginning the algorithm. It also is a two-pass mode (i.e., one pass to achieve 

privacy and the other pass for authenticity) and, as such, was not designed for speed [19]. 

SIV and EAX are currently under consideration by NIST and were included in the 

ODroid processor performance analysis [20]. 

The ChaCha20 algorithm for encryption and Poly1305 for authentication have 

become a popular alternative in industry for performing AE [21]. In 2014, Google 

replaced GCM on its Android phones with ChaCha20-Poly1305, believing it to be more 

secure and showing it to be significantly faster in software implementations [22]. 

ChaCha20-Poly1305 was designed to be fast in software on generic computer 

architectures by minimizing hardware intensive operations such as matrix multiplication 

[23]. While not approved for classified data, it was included in the analysis to provide 

both a baseline and an option for secure communications when the swarm is not 

performing classified operations. 

The AES algorithms were implemented using the Python library PyCryptodomex 

3.4.2. This library is written in Python except for the pieces critical to performance, 

which were written in C [24]. ChaCha20-Poly1305 was implemented using the Python 

library PyNaCl 1.0.1. The library is also written in Python but is a wrapper around the 

libsodium library, which is written in C. 

PyCryptodomex allows for IV sizes of between 7 and 13 bytes for CCM. For 

CCM, the chosen IV size is 13 bytes and for all other AES based algorithms is 16 bytes 

as recommended by [25]. The IV size for PyNaCl is required to be 24 bytes [26]. 

Message authentication codes (MACs) are bytes attached to each message used to 

verify the authenticity of a message. The MAC size for each algorithm was 16 bytes [25], 

[26]. 
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2. Appropriate Layer for Applying Security 

In most applications there is a choice of whether to place security at the 

application layer or at the transport layer. Due to the connectionless nature of the swarm, 

it is possible to place security at an even lower level, just above the Physical Layer. Every 

message that is sent on the swarm channel is received by every other entity, with no 

expectation of routing; therefore, the entire frame can be encrypted, including MAC 

addresses. This prevents an adversary from gathering potentially critical message source 

information. Doing so, however, requires specialized hardware and/or software and is not 

possible with the current swarm configuration. 

Security at the Transport Layer is also problematic. WPA2 with authentication on 

Ubuntu 14.04 is not supported for a connectionless ad-hoc network without a central 

access point or centralized authentication server [27]. The ALFA Wi-Fi radio provides 

WPA2 encryption but only with 128-bit keys and lacks authentication that will work with 

the connectionless swarm configuration [28]. 

Security at the Application Layer is easily implementable and provides privacy 

and authenticity. For the purposes of this study, security was implemented at the 

Application Layer on the ODroid processor. Implementation at the Application Layer 

allows us to determine the impact of security on communications within the swarm. 

E. CHAPTER SUMMARY 

The UAV swarm architecture imposes constraints on the security framework. 

There are numerous ways to attack the swarm. To provide a secure channel for swarm 

communications without modifying the swarm architecture requires symmetric 

encryption with a shared key between all UAVs. In the remainder of this thesis, the cost 

associated with implementing the various AE alternatives mentioned in this chapter are 

detailed. 
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III. EFFECTS OF AUTHENTICATED ENCRYPTION ON THE 
NETWORK THROUGHPUT 

A. SIMULATION DESCRIPTION 

To determine the effects of security on the network, it is necessary to get a sense 

of the amount and type of traffic that is being passed. 

Three instances of UAVs were created using multi-UAV simulation-in-the-loop 

(SITL) software, commanded and flown with actual flight software as described in [29]. 

The messages passed between UAVs and ground station were the same as though the 

UAVs had been flying. For each message on the channel, the message type, size, time of 

transmission and sending UAV was recorded. A larger software swarm would have been 

preferred, but hardware limitations resulted in inaccurate results when the number of 

UAVs grew larger than three. In Section C of this chapter, how the results obtained from 

a three UAV swarm are relevant to larger swarms are discussed. 

 The swarm has the following behaviors that it can perform: 

 Line Formation: UAVs form into a line and fly to a designated location 
or flight pattern. 

 Swarm Search: UAVs cooperatively search a specified area. 

 Greedy Shooter: UAVs find the closest enemy UAV and tag it as being 
shot. 

 PN Interceptor: Command given to one UAV to intercept another. 

 Eager Altitude Sort: UAVs are sorted by altitude. Missing information is 
requested from other UAVs. Responses to requests are given about itself 
and other missing UAVs. 

 Lazy Altitude Sort: Similar to Eager Altitude Sort except only missing 
information about itself is broadcast. 

 Independent Transit: All UAVs in a subswarm transit separately to a 
geographic position. 

 Sequence Land: UAVs land in an orderly fashion. 
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A software application called Swarm Commander is used to command the swarm 

to perform these behaviors during actual operations. In the simulation, Swarm 

Commander was used to execute each of the behaviors in the order presented earlier. 

When parameters were required, the default values were selected.  

B. SIMULATION RESULTS 

There was an average of 13.02 messages per UAV transmitted in any given 

second. The average number of messages per second for a three UAV swarm was 39.07, 

with a standard deviation of 6.618 and a high of 52. The average unencrypted message 

size was 141.61 bytes with a standard deviation of 12.54. The throughput of the 3-UAV 

swarm over the time of the experiment is illustrated in Figure 5. As can be seen, 

throughput is fairly constant, and it is difficult to distinguish when certain behaviors are 

occurring. 

 

Figure 5.  Total Throughput on a 3-UAV Swarm Channel without AE 

Traffic is dominated by just three types of messages: Pose, Flight Status and 

Heartbeat. These messages are used by the UAVs to update each other and the ground 

station with telemetry and health information. They are sent out at regular intervals 

regardless of swarm size. With a 3-UAV swarm, the breakdown of occurrence by 

message type is shown in Table 6. 
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Table 6.   Occurrence of Message Type 

Message 
Type 

Occurrence 

Pose 74.38% 
Flight Status 14.38% 
Heartbeat 9.48% 
Other 1.76% 

 

The throughput results of a 3-UAV swarm when Pose, Flight Status and Heartbeat 

messages are removed is shown in Figure 6. Throughput is much lower, and areas where 

behaviors occur are somewhat distinguishable when compared to Figure 5. 

 

Figure 6.  Total Throughput on a 3-UAV Swarm Channel with Pose, Flight 
Status and Heartbeat Messages Removed 

The maximum and average throughputs that were achieved with each AE method 

tested are listed in Table 7. In addition, the average bytes per message overhead incurred 

due to cryptographic operations is also listed. ChaCha20-Poly1305 has the greatest 

overhead. Note that the bytes per message overhead incurred by each algorithm is 

constant, regardless of message length; thus, as message length increases, the overhead as 

a percentage of message length due to cryptographic operations decreases. 
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Table 7.    Effects of Cryptographic Operations on Throughput 

Cryptographic 
Algorithm 

Average 
Throughput 

(kbps) 

Maximum 
Throughput 

(kbps) 

Average 
Overhead 

Incurred (%) 
None 44.23 60.28 0 
CCM 53.29 71.64 20.4 
GCM 54.29 72.82 22.5 
ChaCha20-
Poly1305 56.73 76.96 28.2 

 

C. EXTENDING RESULTS TO LARGER SWARMS 

Knowing how these results apply to larger swarm sizes is essential for an accurate 

understanding of the effects of AE on network throughput. To determine the effects, it 

was necessary to analyze each message in order to determine how it depends on the size 

of the swarm. There are two ways in which a message can be dependent on swarm size: 

length dependent and frequency dependent. A message is length dependent if a particular 

message changes length as a function of swarm size. A message is frequency dependent 

if how often a message is sent depends on swarm size. 

In a best case scenario, with complete message independence of swarm size, the 

growth rate of network traffic is ( )O n , where n is the number of UAVs in the swarm. In a 

behavior where messages grow by a constant amount with each additional UAV, the 

growth rate of network traffic is 2( )O n . In a behavior where the frequency of messages 

increases at a constant rate with each additional UAV, the growth rate of network traffic 

is also 2( )O n . In a worst case scenario, where both message frequency and length grow 

by a constant amount with each additional UAV, the growth rate of the network traffic is 

3( )O n . 

When all messages are independent of swarm size, how average throughput 

increases as the swarm size grows, extrapolated based on the data gathered in the 3-UAV 

swarm simulation, is illustrated in Figure 7. In this scenario, even in a 100-UAV swarm 

with 30% cryptographic overhead, the swarm does not approach the 72.2-Mbps 

throughput ceiling. 
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Figure 7.  Average Total Throughput as a Function of Swarm Size Where 
Messages Do Not Depend on Swarm Size (No AE) 

In contrast, if an additional packet is sent by each additional UAV per second and 

each of those messages grows by 10 bytes for each UAV, we get the results shown in 

Figure 8. With larger swarms the channel is overwhelmed, even without cryptographic 

overhead. 

 

Figure 8.  Average Total Throughput as a Function of Swarm Size Where 
Messages Have Both Length and Frequency Dependence on Swarm 

Size (No AE) 
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In Figure 7 and Figure 8, a reasonable lower and upper bound, respectively, on 

network traffic is shown. To determine the likelihood of the two scenarios, a closer 

examination of each behavior was undertaken. How each behavior affects message 

dependence on swarm size is shown in Table 8. 

Table 8.   Message Dependence on Swarm Size 

Behavior/ 
Message Type 

Length 
Dependence 

Frequency 
Dependence 

Flight Status No No 
Pose No No 
Heartbeat No No 
Eager Altitude Sort Yes Yes 
Greedy Shooter No Yes 
Independent Transit No No 
Lazy Altitude Sort No Yes 
Line Formation Yes Yes 
PN Interceptor No No 
Sequence Landing No No 
Swarm Search No Yes 

 

Flight Status, Pose and Heartbeat messages are sent out at frequencies of 10.0 Hz, 

2.0 Hz and 2.0 Hz, respectively, regardless of swarm size. 

The Eager Altitude Sort and Line Formation behaviors make use of a consensus 

sort algorithm. This algorithm requests a message from each UAV from which it lacks 

information. A larger swarm increases the likelihood of missing information. In addition, 

response messages from any UAV includes information from any other UAV whose 

information was also requested and message lengths also increase. Designers recognized 

this and limited the frequency of the messages to 4.0 Hz, thus, the frequency dependence 

has an upper bound. 

In the Greedy Shooter behavior, the frequency dependence is very weak and 

probably undetectable. As the swarms grow, the density of UAVs also grows, creating 

more shooting opportunities and, thus, more kill reports. 
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In the Lazy Altitude Sort behavior, the consensus sort algorithm is also used with 

the difference being any UAV whose information is requested only responds with 

information about itself. Thus, there is no length dependence. The frequency dependence 

is again limited to 4.0 Hz. 

In the Swarm Search behavior, a lead UAV is designated at the commencement of 

the behavior. The lead UAV proceeds to assign search areas to each of the other UAVs in 

its subswarm. There is frequency dependence but only from the point of view of the lead 

UAV. 

The worst case for network traffic is during a behavior using the consensus sort 

algorithm where each UAV requests information from every other UAV. If an additional 

four messages are sent from each UAV per second, each UAV grows ten bytes for each 

UAV in the swarm, and a 30% overhead is added on for worst case cryptography. The 

resulting throughput is similar to that shown in Figure 9. 

 

Figure 9.  Expected Throughput of a Worst Case Scenario Behavior, with Worst 
Case Cryptographic Overhead Included 

Even with the worst case behavior, and using the largest cryptographic overhead, 

the swarm communications channel is left with some operational margin. 
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D. CHAPTER SUMMARY 

The effects of AE on network throughput were discussed in this chapter. The 

amount of traffic on the communication channel was found to be very dependent on the 

swarm behavior. There are a number of possible behaviors that the swarm can perform. 

Even for worst case behavior while performing the AE algorithm with the largest 

overhead, the swarm throughput appears to have margin to spare on a 72.2-Mbps 

channel. A discussion of how AE impacts processing performance is contained in the 

next chapter. 
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IV. EFFECTS OF AUTHENTICATED ENCRYPTION ON THE 
ODROID COMPUTER 

A. EXPERIMENT DESCRIPTION 

To completely understand the impact of AE on the swarm, it is necessary to 

determine if the ODroid processor is capable of sustaining the cryptographic overhead 

incurred. To make this determination, GCM, CCM, SIV, EAX and ChaCha20-Poly1305 

algorithms were implemented and executed on the ODroid hardware. 

AE was performed on messages of sizes ranging from eight to 32,768 bytes and 

then decrypted and authenticated. For each message size, this step was repeated 10,000 

times and averaged. Each message was randomized on each pass to create as cold a cache 

as possible. The experiment was repeated with key sizes of 128, 192 and 256 bits. 

ChaCha20-Poly1305 and SIV do not provide functionality for key sizes of 128 and 192 

bits. 

B. EXPERIMENT RESULTS 

The execution time for each AE algorithm with key sizes of 128, 192, and 256 

bits, are shown in Figures 10, 11 and 12, respectively. 

 

Figure 10.  ODroid Performance While Executing Cryptographic Operations with 
128-Bit Key Sizes 
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Figure 11.  ODroid Performance While Executing Cryptographic Operations with 
192-Bit Key Sizes 

 

Figure 12.  ODroid Performance While Executing Cryptographic Operations with 
256-Bit Key Sizes 
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As was expected, the best performance for any key size was ChaCha20-Poly1305. 

EAX and SIV had the poorest overall results. This poor performance was anticipated 

given their specialized nature. 

Based upon the results, CCM outperformed GCM. As stated earlier, the biggest 

advantage of GCM is its ability to be parallelizable. GCM did not perform better than 

CCM in this situation for the following reason: GCM performs best when software is 

tailored to the hardware, making use of parallel processors [16], [30]. It does not appear 

that the PyCryptodomex library makes full use of the parallelizable nature of GCM and 

certainly was not designed specifically for the ODroid computer. These results are 

consistent with the results found in [19]. 

Another interesting result is how little key size affects speed of execution, 

especially with smaller messages. The average length of an unencrypted message was 

141.61 bytes. The average time (in ms) to execute each iteration of an average length 

message is listed in Table 9. 

Table 9.   Cryptographic Times for Average Sized Message in ms 

 128 Bit Key 192 Bit Key 256 Bit Key 
CCM 1.30 1.31 1.32 
ChaCha20-Poly1305   .0781 
EAX 4.40 4.28 4.33 
GCM 2.10 2.08 2.09 
SIV   4.54 

 

C. ODROID PERFORMANCE UNDER VARIOUS NETWORK LOADS 

From the channel throughput analysis in Section IV, we can predict the burden 

that cryptography places on the ODroid computer. Given that the average unencrypted 

message size was 141.61 bytes and the average number of messages per second per UAV 

was 13.02, an average cryptographic load for a given swarm size on the ODroid computer 

can be estimated. 
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Assuming messages do not exhibit any dependence on swarm size (as laid out in 

Figure 7) and assuming an average case throughput of 13.02 messages per UAV per 

second, we see the percentage of time out of each second spent conducting cryptographic 

operations is displayed in Figure 13.  

 

Figure 13.  Average Case Percentage of Time Spent on Cryptographic Operations 
with 256-Bit Key 

SIV and EAX are not able to support a 50-UAV swarm, as the ODroid would be 

spending 100% of its time on cryptographic operations and still not be able to keep up 

with the traffic load. GCM and CCM might be able to manage an average case load in a 

50-UAV swarm but would be consuming a significant amount of the processing capacity, 

leaving little to other processes. The worst case scenario as defined by Figure 9 is shown 

in Figure 14. Using a smaller key size does not improve performance by any meaningful 

amount. 



 29

 

Figure 14.  Worst Case Percentage of Time Spent on Cryptographic Operations 
with 256-Bit Key. 

Clearly SIV, EAX, GCM and CCM are not an option. It does appear that 

ChCha20-Poly1305 would be successful in providing AE for the swarm. 

D. MITIGATIONS FOR CLASSIFIED INFORMATION 

Currently, the swarm at NPS is used for academic purposes. It does not gather or 

create classified information and does not require the use of an AES-based algorithm. In 

the event that classified information was gathered, the following mitigations can be used 

to enable the use of either GCM or CCM: 

 Upgrade to a more powerful processor. 

 Use an Application Specific Integrated Circuit (ASIC). 

 Tailor the AES algorithm to the ODroid processor. 

 Only use AE on command data. 

Performing AE only on command data gives access to information about the state 

of the swarm and its current location and might not be tolerable. It also opens the risk of 

an adversary planting false telemetry data and surreptitiously changing the state of the 

swarm. It would, however, prevent the taking over of the swarm by the sending of direct 
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commands. The impact on swarm performance in the worst case network channel 

scenario presented in Figure 9 when only command data is encrypted is shown in Figure 

15. 

 

Figure 15.  Worst Case Percentage of Time Spent on Cryptographic Operations 
Only on Command Data with 256-Bit Key. 

With this mitigation, SIV and EAX still fall short of acceptability on large 

swarms. GCM and CCM perform tolerably, and ChaCha20-Poly1305 again proves the 

superior method.  
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V. CONCLUSION 

A. SUMMARY  

As UAV swarms come into practice, security should be treated as any other 

subsystem and included as part of the initial design. Doing so upfront allows other 

subsystems to be designed to handle the cost incurred by security. In any swarm, AE has 

an impact on performance. In this thesis, that impact on the very specific NPS UAV 

swarm was investigated. 

In the current swarm configuration and architecture, analyses indicates that 

performing AE with either GCM, CCM, SIV or EAX is not feasible. GCM and CCM are 

only feasible by accepting risk. The best choice by far is ChaCha20-Poly1305 and should 

be the AE choice in any scenario where classified data is not being handled or created. 

Operating a swarm without communication security poses too great a risk in 

almost any operation. Completion of this work is essential for the ultimate success of 

UAV swarms in any operational environment. 

B. FUTURE WORK 

In this thesis, baseline encryption and authentication algorithms to deal with 

communication link vulnerabilities were established and are a stepping stone to 

developing a comprehensive security architecture for the UAV swarm system. This was 

the first step, and there is much more work to be done in this area of research. Future 

work is needed to fully and accurately determine the true affect of AE on swarm 

communications. The following subsections detail courses of action to further measure 

the impact of AE on a swarm. 

1. Network Simulator 3 (NS3) Model

NS3 is software used to model a network. The NPS UAV swarm can be modeled 

in NS3. This will allow a more in depth understanding of how much capacity is actually 

available, and we will be able to model how distance, packet collision avoidance and 

modulation affect throughput. 
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2. Traffic Bombardment 

An experiment designed to bombard an ODroid with typical traffic through an 

IEEE 802.11n connection should be executed. The amount of traffic should be increased 

until a saturation point is discovered. This will determine how much processor margin is 

available for cryptographic operations. 

3. Power Consumption 

Power consumption due to AE could prove significant. Determining the impact of 

encryption on battery life is essential. To determine this, UAVs performing AE and 

others not performing AE should have their battery life determined and compared against 

each other. 

4. Implementation in the NPS Swarm 

To truly and fully understand the impact of AE on performance, it must be 

actually implemented in the swarm. This should be the ultimate goal of future 

researchers. 
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APPENDIX A. PYTHON CODE FOR PERFORMING 
AUTHENTICATED ENCRYPTION 

A. CODE DESCRIPTION 

The following code performs various cryptographic operations. This module is 

created for academic purposes in order to determine effect of encryption and 

authentication on the swarm. It has not been reviewed by a cryptographic expert. Known 

vulnerabilities are 

 NONCE reuse is improbable, but possible.  

 There is no check for replay attacks. Part of the nonce could include a 
sequence number. Messages should be checked against this sequence 
number. 

The functions encrypt_AES and decrypt_AES use AES to provide application 

layer encryption and authentication. The functions encrypt_fast and decrypt_fast use the 

NaCl library to provide rapid encryption. AES is very secure but might be an overdesign. 

NaCl uses ChaCha20-Poly1305 for AE operations. 

Included is code that tests the correct operation of various functions and also code 

that determines the execution time of various cryptographic operations. To use this 

module properly, it should be called from the acs_socket.py module. All messages make 

use of the acs_socket.py module to communicate external to the UAV, so it is an ideal 

location to place cryptographic operations. In particular, there is a send function and a 

receive function where cryptographic operations should take place; thus, to secure all 

communications leaving the UAV through the IEEE 802.11n interface, only two 

functions in the acs_socket.py module should be modified. 

B. SOURCE CODE OF ACS_CRYPTOGRAPHY.PY 

#!/usr/bin/env python 
#---------------------------------------------------------------------- 
# ACS Encryption Library 
# LT Richard Thompson, 2016 
#---------------------------------------------------------------------- 
from Cryptodome.Cipher import AES 
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from Cryptodome.Random import get_random_bytes 
from uuid import getnode as get_mac_addr 
import nacl.secret 
import nacl.utils 
import struct 
 
encryption_on = True 
key = b’Sixteen byte keySixteen byte key’ #two sixteen byte keys make a 256 bit key 
 
 
if encryption_on: 
 print (“Encryption On”) 
else: 
 print (“Encryption Off”) 
 
AESmode = AES.MODE_GCM 
box = nacl.secret.SecretBox(key) 
 
# For documentation on parameter sizes for different modes 
# refer to API: http://legrandin.github.io/pycryptodome/Doc/3.3.1/Crypto.Cipher-
module.html 
AESmacSize = 16 
if AESmode == AES.MODE_CCM: 
 AESnonceSize = 13 
else:  
 AESnonceSize = 16 
 
def encrypt(data, msg): 
 #return _encrypt_AES (data) 
 return _encrypt_fast(data) 
  
def decrypt(data): 
 #return _decrypt_AES (data)  
 return _decrypt_fast(data) 
 
def _encrypt_AES (msg): 
 nonce = get_random_bytes(AESnonceSize) 
 cipher = AES.new(key, AESmode, nonce) 
 encrypted_msg = cipher.encrypt(msg) 
 mac = cipher.digest() 
 fmt = “>“+str(AESnonceSize)+”s”+str(AESmacSize)+”s” + 
str(len(encrypted_msg)) + “s” 
 return struct.pack(fmt, *(nonce, mac, encrypted_msg)) 
def _decrypt_AES (msg):  
 nonce = msg[0 : AESnonceSize] 
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 mac = msg[AESnonceSize : AESmacSize+AESnonceSize] 
 ciphertext = msg[AESmacSize+AESnonceSize : ] 
 cipher = AES.new(key, AESmode, nonce) 
 
 try: 
  plaintext = cipher.decrypt_and_verify(ciphertext, mac) 
  return plaintext 
 except ValueError: 
  print (“Key incorrect or message corrupted. acs_cryptography.py decrypt 
function\n”) 
  return (“ERROR in acs_cryptography.py”) 
 
 
def _encrypt_fast(msg): 
 nonce = nacl.utils.random(nacl.secret.SecretBox.NONCE_SIZE) 
 encrypted = box.encrypt(msg, nonce) 
 return encrypted 
 
 
def _decrypt_fast(msg): 
 try: 
  # box.decrypt also authenticates 
  plaintext = box.decrypt(msg) 
  return plaintext 
 except: 
  print (“Key incorrect or message corrupted. acs_cryptography.py decrypt_fast 
function\n”) 
  return (“ERROR in acs_cryptography.py”) 
 
#### Test Cases 
## General Test 
msg = b’This tests the encrypt/decrypt functions’ 
print (‘\n\nBefore: %s’ % msg) 
mycipher = encrypt(msg) 
print (mycipher) 
print (‘After: %s’ % decrypt(mycipher)) 
 
## Test encrypt AES 
msg = b’Testing encrypt_AES/decrypt_AES: AES.MODE_GCM. This is the message.’ 
print (‘\n\nBefore: %s’ % msg) 
mycipher = _encrypt_AES(msg) 
print (mycipher) 
print (_decrypt_AES(mycipher)) 
 
## Test encrypt_fast 
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msg = b’Testing encrypt_fast/decrypt_fast: This is the message.’ 
print (‘\n\nBefore: %s’ % msg) 
mycipher = _encrypt_fast(msg) 
print (‘During: %s’ % mycipher) 
print (‘After: %s’ % _decrypt_fast(mycipher)) 
 
#### Timing Test 
import time 
import sys 
import os 
import math 
 
iters = 10000 
AESmodes = [AES.MODE_CCM, AES.MODE_GCM, AES.MODE_EAX, 
AES.MODE_SIV] 
AESmodesTostr = [“CCM,” “GCM,” “EAX,” “SIV”] 
for i in range(0, 13): 
 print (“Message Size in bytes: “+ str(int(math.pow(2,i))*8)) 
 # AES_Modes 
 for j in range(0, len(AESmodes)): 
  cryptoTime = 0 
  AESmode = AESmodes[j] 
  if AESmode == AES.MODE_CCM: 
   AESnonceSize = 13 
  else:  
   AESnonceSize = 16 
  for x in range(0, iters): 
   msg = os.urandom(int(math.pow(2,i))*8) 
   start = time.clock() 
   mycipher = _encrypt_AES(msg) 
   _decrypt_AES(mycipher) 
   end = time.clock() 
   cryptoTime = cryptoTime + (end - start) 
  print (str(AESmodesTostr[j]) + “: “ + str(cryptoTime/iters)) 
 
 # NaCl 
 cryptoTime = 0 
 for x in range(0, iters): 
  msg = os.urandom(int(math.pow(2,i))*8) 
  start = time.clock() 
  mycipher = _encrypt_fast(msg) 
  _decrypt_fast(mycipher) 
  end = time.clock() 
  cryptoTime = cryptoTime + (end - start) 
 print (“NaCl: “ + str(cryptoTime/iters)) 
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APPENDIX B. SUGGESTED CONFIGURATION OF EQUIPMENT 
USED TO PERFORM TRAFFIC BOMBARDMENT EXPERIMENT 

A. DESCRIPTION OF EXPERIMENT 

To test how a UAV handles an increasing amount of traffic, the swarm can be 

configured as shown in Figure 16. In this configuration, a Swarm Traffic Simulator can 

generate an increasing amount of traffic. The actual UAV running the actual payload is 

connected through an Ethernet cable to a different laptop computer feeding it simulated 

flight information. Software on the UAV tracks how many packets it manages to receive, 

decrypt and authenticate successfully. Repeating the experiment without AE and 

comparing throughput will clarify the impact of AE on the swarm. 

 

Figure 16.  Approximated Hardware-in-the-Loop Simulation. 
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B. EQUIPMENT CONFIGURATION 

1. Turn on the o-droid 
a. The blue light should be flashing on the wifi adapter. If a constant light, reboot. 

2. The o-droid must be configure to run DHCP 
ssh into the o-droid on the UAV 
sudo vim /etc/network/interfaces 
change iface eth0 static to be dhcp (not on wlan0) 

3. Connect the laptop and o-droid through ethernet 
a. Run an ethernet cable from the odroid to a switch connected to a DHCP server 

i. If no DHCP server, you will have to mess with static IPs 
b. Run an ethernet cable from your laptop to the same switch 

4. Setup wifi 
a. Connect a wifi network adapter to both the o-droid and the laptop 
b. Run ifconfig and see what interface they are on. 

5. Configure laptop to be on zephyr adhoc wifi network 
a. wifi_config.sh -2 wlan3 223 (-2 is the red team network, -3 is blue team, check to see 

what network it is on. wlan3 is the interface that the highpower wifi adapter is using) 
i. Check ifconfig that it has an ip adress on wlan3 (or the relevant 

interface) 
ii. Ping the UAV at 192.168.3.XX (Where XX is the UAV number, a sticker on 

the plane, .2 is the blue team, .3 is the read team [yes, it is backwards]) 
6. ssh into the odroid 

a. ssh odroid@192.168.3.XX 
b. password is odroid 

7. On laptop, run special multisitl with Arduplane, mavproxy and JSBSim 
a. modify (if you haven’t already) ~/ACS/acs-env/multi-sitl-start.bash 

i. add the word exit  
b. ~/multi-sitl-start-no-payload.bash 1 

i. its configured to have an “exit” before adding payload 
ii. We only want one instance of it 

8. On the o-droid, start the ROS startup script 
a. roslaunch ap_master sitl.launch id:=101 name:=sitl101 sitl:=tcp:172.20.90.181:6772 

port:=5554 ns:=sitl101 dev:=eth0 
b. For the tcp address, use the ETHERNET address (run ifconfig on the laptop). Don’t 

change the port after the tcp address. 
9. To Run the Health monitor 

a. Run it over wifi, not ethernet, because the ethernet connection is being used. 
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